You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
18 June 2013Numerical simulation of InAs nBn infrared detectors with n-type barrier layers
This paper presents one-dimensional numerical simulations and analytical modeling of ideal (only diffusion current and only Auger-1 and radiative recombination) InAs nBn detectors having n-type barrier layers, with donor concentrations ranging from 1.8×1015 to 2.5×1016 cm-3. We examine quantitatively the three space charge regions in the nBn detector with an n-type barrier layer (BL), and determine criteria for combinations of bias voltage and BL donor concentration that allow operation of the nBn with no depletion region in the narrow-gap absorber layer (AL) or contact layer (CL). We determine the quantitative characteristics of the valence band barrier that is present for an n-type BL. From solution of Poisson’s equation in the uniformly doped BL, we derive analytical expressions for the valence band barrier heights versus bias voltage for holes in both the AL and the CL. These expressions show that the VB barrier height varies linearly with the BL donor concentration and as the square of the BL width. Using these expressions, we constructed a phenomenological equation for the dark current density versus bias voltage which agrees reasonably well with the shape of the J(V) curves from numerical simulations. Our simulations suggest that the nBn detector should be able to be operated at or near zero-bias voltage.
The alert did not successfully save. Please try again later.
Marion Reine, Benjamin Pinkie, Jonathan Schuster, Enrico Bellotti, "Numerical simulation of InAs nBn infrared detectors with n-type barrier layers," Proc. SPIE 8704, Infrared Technology and Applications XXXIX, 87041Y (18 June 2013); https://doi.org/10.1117/12.2016150