You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
23 May 2013Intrinsically-low Brillouin gain optical fibers
Numerous methods to increase the stimulated Brillouin scattering (SBS) threshold have been previously
implemented. Some are passive, based on acousto-optic fiber designs that incorporate longitudinally- or radially-tailored
optical and/or acoustic index profiles, leading to broadened Brillouin gain spectra (BGS) with reduced peak
gain. Some are active, relying on an applied temperature or strain distribution, also resulting in broadened BGS.
Broadening the laser spectrum still represents the most effective method to-date to obtain large-scale (> 20 dB)
decreases in the gain, but the suitability of this method depends largely on the application and system requirements
on the laser spectrum. Despite these technologies, some introduced only in the last decade, the vast majority of high-energy, narrow-linewidth fiber laser systems are still limited by SBS rather than the availability of pump power. We
present an alternative approach; rather than focusing on ‘suppressing’ SBS in waveguide or other designs, we
propose implementing materials with intrinsically low Brillouin gain. We focus on high-density, high-soundvelocity,
large acoustic-damping-coefficient, and low-photoelastic-constant materials wherein the correct balancing
of physical characteristics gives rise to extremely low Brillouin gain. In general, the approach requires the use of
compositions that would be considered to be highly unconventional and unachievable utilizing standard fiber
fabrication methods. For example, we describe recent results on sapphire-derived fibers (among other compositions)
wherein a Brillouin gain nearly 20 dB lower than those of more conventional fibers has been realized. Other
compositions will also be presented, including new results on a novel baria doped fiber, including others predicted to
have zero-valued photoelastic constants, and therefore zero Brillouin gain.
The alert did not successfully save. Please try again later.
Peter D. Dragic, John Ballato, Stephanie Morris, Thomas Hawkins, "Intrinsically-low Brillouin gain optical fibers," Proc. SPIE 8733, Laser Technology for Defense and Security IX, 87330N (23 May 2013); https://doi.org/10.1117/12.2018127