You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
18 May 2013Undercomplete learned dictionaries for land cover classification in multispectral imagery of Arctic landscapes using CoSA: clustering of sparse approximations
Techniques for automated feature extraction, including neuroscience-inspired machine vision, are of great interest for landscape characterization and change detection in support of global climate change science and modeling. We present results from an ongoing effort to extend machine vision methodologies to the environmental sciences, using state-of-theart adaptive signal processing, combined with compressive sensing and machine learning techniques. We use a Hebbian learning rule to build undercomplete spectral-textural dictionaries that are adapted to the data. We learn our dictionaries from millions of overlapping multispectral image patches and then use a pursuit search to generate classification features. Land cover labels are automatically generated using our CoSA algorithm: unsupervised Clustering of Sparse Approximations. We demonstrate our method using multispectral Worldview-2 data from three Arctic study areas: Barrow, Alaska; the Selawik River, Alaska; and a watershed near the Mackenzie River delta in northwest Canada. Our goal is to develop a robust classification methodology that will allow for the automated discretization of the landscape into distinct units based on attributes such as vegetation, surface hydrological properties, and geomorphic characteristics. To interpret and assign land cover categories to the clusters we both evaluate the spectral properties of the clusters and compare the clusters to both field- and remote sensing-derived classifications of landscape attributes. Our work suggests that neuroscience-based models are a promising approach to practical pattern recognition problems in remote sensing.
The alert did not successfully save. Please try again later.
Daniela I. Moody, Steven P. Brumby, Joel C. Rowland, Chandana Gangodagamage, "Undercomplete learned dictionaries for land cover classification in multispectral imagery of Arctic landscapes using CoSA: clustering of sparse approximations," Proc. SPIE 8743, Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery XIX, 87430B (18 May 2013); https://doi.org/10.1117/12.2016135