Paper
18 May 2013 Extending continuum fusion to create unbeatable detectors
Author Affiliations +
Abstract
We develop an extension of continuum fusion methods that allows the generation of unbeatable decision rules for discrete binary composite hypothesis testing problems. Background: Amongst the many flavors of continuum fusion (CF) algorithm, one can always be found that will produce the uniformly most powerful (UMP) solution to any composite hypothesis (CH) testing problem, when such a solution exists [1]. This optimality property, combined with the flexibility in design afforded by CF principles, led to the prospect that with any reasonably defined optimality metric, any detection problem could be solved with some CF-based decision rule (DR). Doubt was cast on this possibility in a paper by Theiler [2], who showed that applying continuum fusion logical rules to a particular discrete (as opposed to continuum) problem could not produce the better algorithm. Theiler’s example requires creation of a CH test, and for these no generally optimal form exists. However, Theiler’s problem also obeyed an invariance principle, and if solutions are restricted to obey the same invariance, then a uniformly most powerful invariant (UMPI) solution does exist. This solution cannot be generated by applying current CF principles to this discrete parameter problem. In short, standard CF logic cannot produce a highly desirable answer. The UMPI solution exemplifies Bayesian solutions to discrete parameter CH problems, and it is shown below why standard CF solutions cannot always produce them, in agreement with Theiler’s result. Bayesian solutions feature prominently in statistical decision theory, because they form the class of unbeatable decision rules, as defined below. Thus, standard CF principles cannot produce an important class of solutions to discrete CH problems. Here we extend the CF methodology in a way that converts any discrete parameter fusion problem into a continuous one. Continuum fusion solutions to the converted problem then generate the entire class of unbeatable detectors.
© (2013) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Alan Schaum "Extending continuum fusion to create unbeatable detectors", Proc. SPIE 8743, Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery XIX, 87430D (18 May 2013); https://doi.org/10.1117/12.2015158
Lens.org Logo
CITATIONS
Cited by 2 scholarly publications.
Advertisement
Advertisement
RIGHTS & PERMISSIONS
Get copyright permission  Get copyright permission on Copyright Marketplace
KEYWORDS
Sensors

Composites

Logic

Binary data

Ions

Target detection

Detection and tracking algorithms

Back to Top