Paper
17 May 2013 Multilayer micromachined bandpass filter for L/S band satellite communication systems
A. Q. A. Qureshi, L. Pelliccia, S. Colpo, J. Iannacci, P. Farinelli, B. Margesin
Author Affiliations +
Proceedings Volume 8763, Smart Sensors, Actuators, and MEMS VI; 876332 (2013) https://doi.org/10.1117/12.2017314
Event: SPIE Microtechnologies, 2013, Grenoble, France
Abstract
This paper presents the design and fabrication of a 2nd order L/S band filter used as a test vehicle for the development of a fabrication technology for cavity microwave filters based on micromachining in order to preliminary explore all the technological constraints on a simpler structure. The multilayered 2nd order pseudo-elliptic L/S band filter is based on λ/4 TEM mode resonators which are patterned on a dielectric layer. For convenience 500 μm thick Si wafers have been used even if this limits the simulated Q factor of the 2nd order L/S band filter to about 200. The test structures presented here amount to the more sophisticated 4th order filters in an extended technological concept (i.e. 1500 μm thick Si wafer and two additional modules) but still based on similar resonating elements aiming to replace the existing bulky metallic waveguide filters installed in many satellite transceivers. A five mask fabrication process is employed for the realization of the elements of said filter which is based on three modules. Module A and B are fabricated on the same wafer while module C which served as ground is fabricated on a separate wafer. A 2 μm high sealing ring is etched on the back of module A and B by DRIE (Deep Reactive Ion Etching) while cavities and TSVs (Through Silicon Vias) are etched by TMAH (TetraMethylAmmonium Hydroxide). The surface mounting compatibility of the filter is obtained by adopting vertical via holes to connect the external feeding lines (e.g. microstrip or coplanar) with the filter resonators. Such a transition separates the input/output from the filter input/output coupling mechanism. The final wafers are diced and specimens are vertically stacked and bonded through thermocompression bonding. The overall filter dimensions are 48x20x1.5 mm3.
© (2013) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
A. Q. A. Qureshi, L. Pelliccia, S. Colpo, J. Iannacci, P. Farinelli, and B. Margesin "Multilayer micromachined bandpass filter for L/S band satellite communication systems", Proc. SPIE 8763, Smart Sensors, Actuators, and MEMS VI, 876332 (17 May 2013); https://doi.org/10.1117/12.2017314
Lens.org Logo
CITATIONS
Cited by 1 scholarly publication.
Advertisement
Advertisement
RIGHTS & PERMISSIONS
Get copyright permission  Get copyright permission on Copyright Marketplace
KEYWORDS
Semiconducting wafers

Resonators

Silicon

Etching

Gold

Microwave radiation

Manufacturing

Back to Top