You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
3 May 2013Spectral interferometry-based surface plasmon resonance sensing of liquid analyte refractive index change
Theoretical study of a polarimetric setup intended to measure the refractive index change of a liquid analyte is presented. The detection scheme is based on the excitation of surface plasmon resonance in Kretschmann configuration combined with spectral interferometry. The principle of the method is to observe the spectral interference fringes as a result of mixing of two orthogonal linearly polarized waves with an analyzer. The waves are reflected from the base of a coupling prism covered by a thin metal layer used for generation of surface plasmon waves. The polarimetric setup consists of a linear polarizer, a birefringent crystal, a SF10 coupling prism covered by a gold layer and a linear analyzer. The attenuated total reflection at the prism base serves for the excitation of surface plasmon waves. The output optical field is then analyzed by a spectrometer. The phase change of resulting interference spectrum contains the information about the refractive index change of investigated analyte. The shift of phase curve is related to the analyte refractive index change. The model computation is performed in the frame of thin-film optics and the dispersion properties of all included materials are taken into account.
The alert did not successfully save. Please try again later.
Dalibor Ciprian, Petr Hlubina, Jiří Luňáček, "Spectral interferometry-based surface plasmon resonance sensing of liquid analyte refractive index change," Proc. SPIE 8774, Optical Sensors 2013, 87741D (3 May 2013); https://doi.org/10.1117/12.2017317