You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
26 September 2013Real-time 3D imaging by using color structured light based on Hilbert transform
A method for real-time three-dimensional (3D) imaging based on Hilbert transform is proposed. Based on the properties
of Hilbert transform and De Bruijn sequence, we design an encoding technique based on color fringe patterns to realize
3-D reconstruction of the phase distribution and range images. The calculation of phase map is implemented by using
two sinusoidal fringe patterns with phase shifting 0 and π / 2 each other. Two phase-shifted fringe patterns are assigned
to the red and blue channel of a color pattern, respectively. The phase unwrapping is accomplished with aid of the De
Bruijn sequence pattern stored in the green channel. The experiment results show that the proposed method can not only
acquire 3D data in real-time and one-shot fashion, but also obtain high-resolution and high-density range image data
without any error propagation.
The alert did not successfully save. Please try again later.
Jiping Guo, Xiang Peng, Jiping Yu, Xiaoli Liu, Ameng Li, Meng Wang, "Real-time 3D imaging by using color structured light based on Hilbert transform," Proc. SPIE 8856, Applications of Digital Image Processing XXXVI, 885624 (26 September 2013); https://doi.org/10.1117/12.2022689