You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
Surface Plasmon Resonance (SPR) scattering offers significant advantages compared to traditional reflectivity measure- ments, essentially turning a non-radiative process into a radiative one. Recently, we have shown that SPR scattering can be used in an optical fiber, enabling higher signal to noise ratio, reduced dependence on the metallic thickness as well as the unique capability of multiplexed detection with a single fiber. Here we report a novel SPR scattering based sensor fabricated based on an exposed-core silica Microstructured Optical Fiber (MOF). This MOF presents a structure with a relatively small core (Ø = 10µm), exposed along the whole fiber length. This exposed core MOF allows for fabrication of SPR supporting metallic thin films directly onto the fiber core offering the new prospect of exploiting SPR in a waveguide structure that supports only a relatively small number of guided optical modes, with a structure that offers ease of fabri- cation and handling. A thin silver film of 50 nm thickness was deposited onto the fiber core by thermal evaporation. The significant surface roughness of the prepared metallic coatings facilitates strong scattering of the light wave coupled into the surface plasmon. Performance characteristics of the new exposed core fiber sensor were compared to those of a large bare core silica fiber (Ø = 140µm). Although sensitivity of both sensors was comparable (around 2500nm/RIU ), full width at half maximum (FWHM) of the SPR peaks for the new exposed core fiber sensor decreased by a factor of 3 offering an significant enhancement in the detection limit of the new sensing platform in addition to the prospect of a sensor with a lower detection volume.