You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
7 March 2014High-power dense wavelength division multiplexing (HP-DWDM) of frequency stabilized 9xx diode laser bars with a channel spacing of 1.5 nm
We present a compact High-Power DenseWavelength Division Multiplexer (HP-DWDM) based on Volume Bragg Gratings (VBGs) for spectrally stabilized diode lasers with a low average beam quality M2 ≤50. The center wavelengths of the five input channels with a spectral spacing of 1.5 nm are 973 nm, 974.5 nm, 976 nm, 977.5 nm and 979 nm. Multiplexing efficiencies of 97%±2% have been demonstrated with single mode, frequency stabilized laser radiation. Since the diffraction efficiency strongly depends on the beam quality, the multiplexing efficiency decreases to 94% (M2 = 25) and 85%±3% (M2 = 45) if multimode radiation is overlaid. Besides, the calculated multiplexing efficiency of the radiation with M2 = 45 amounts to 87:5 %. Thus, calculations and measurements are in good agreement. In addition, we developed a dynamic temperature control for the multiplexing VBGs which adapts the Bragg wavelengths to the diode laser center wavelengths. In short, the prototype with a radiance of 70GWm-2 sr-1 consists of five spectrally stabilized and passively cooled diode laser bars with 40Woutput after beam transformation. To achieve a good stabilization performance ELOD (Extreme LOw Divergence) diode laser bars have been chosen in combination with an external resonator based on VBGs. As a result, the spectral width defined by 95% power inclusion is < 120pm for each beam source across the entire operating range from 30 A to 120 A. Due to the spectral stabilization, the output power of each bar decreases in the range of < 5 %.
The alert did not successfully save. Please try again later.
Stefan Hengesbach, Carlo Holly, Niels Krauch, Ulrich Witte, Thomas Westphalen, Martin Traub, Dieter Hoffmann, "High-power dense wavelength division multiplexing (HP-DWDM) of frequency stabilized 9xx diode laser bars with a channel spacing of 1.5 nm," Proc. SPIE 8965, High-Power Diode Laser Technology and Applications XII, 89650C (7 March 2014); https://doi.org/10.1117/12.2036974