You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
Femtosecond pulse mode-locked VECSELs have become a significant focus of research in the VECSEL community, with recent progress being made in several directions including power scaling. Power scaling advances in femtosecond VECSELs have included increasing the average power to over 5W [1], producing 3.3W average power with 400 fs pulses [2]. Here I report our recent work reducing the pulse duration of Watt-level VECSELs to 355 fs, and also developing approaches to reach sub-250-fs pulse durations using coherent broadening in photonic crystal fiber in the normal dispersion regime and a grating pulse compressor.
The alert did not successfully save. Please try again later.
A. H. Quarterman, K. G. Wilcox, "Femtosecond pulse mode-locked VECSELs," Proc. SPIE 8966, Vertical External Cavity Surface Emitting Lasers (VECSELs) IV, 89660R (3 March 2014); https://doi.org/10.1117/12.2039706