You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
7 March 2014High-performance room-temperature THz nanodetectors with a narrowband antenna
We report on the development of a novel class of nanowire-based THz detectors in which the field effect transistor (FET) is integrated in a narrow-band antenna. When the THz field is applied between the gate and the source terminals of the FET, a constant source-to-drain photovoltage appears as a result of the non-linear transfer characteristic of the transistor. In order to achieve attoFarad-order capacitance we fabricate lateral gate FET with gate widths smaller than 100 nm. Our devices show a maximum responsivity of 110 V/W without amplification, with noise equivalent power levels ≤ 1 nW/√Hz at room temperature. The 0.3 THz resonant antenna has bandwidth of ~ 10 GHz and opens a path to novel applications of our technology including metrology, spectroscopy, homeland security, biomedical and pharmaceutical applications. Moreover the possibility to extend this approach to relatively large multi-pixel arrays coupled with THz sources makes it highly appealing for a future generation of THz detectors.
The alert did not successfully save. Please try again later.
Leonardo Viti, Dominique Coquillat, Daniele Ercolani, Wojciech Knap, Lucia Sorba, Miriam S. Vitiello, "High-performance room-temperature THz nanodetectors with a narrowband antenna," Proc. SPIE 8985, Terahertz, RF, Millimeter, and Submillimeter-Wave Technology and Applications VII, 89850W (7 March 2014); https://doi.org/10.1117/12.2040529