You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
12 March 2014Segmentation of risk structures for otologic surgery using the Probabilistic Active Shape Model (PASM)
Our research project investigates a multi-port approach for minimally-invasive otologic surgery. For planning such a surgery, an accurate segmentation of the risk structures is crucial. However, the segmentation of these risk structures is a challenging task: The anatomical structures are very small and some have a complex shape, low contrast and vary both in shape and appearance. Therefore, prior knowledge is needed which is why we apply model-based approaches. In the present work, we use the Probabilistic Active Shape Model (PASM), which is a more flexible and specific variant of the Active Shape Model (ASM), to segment the following risk structures: cochlea, semicircular canals, facial nerve, chorda tympani, ossicles, internal auditory canal, external auditory canal and internal carotid artery. For the evaluation we trained and tested the algorithm on 42 computed tomography data sets using leave-one-out tests. Visual assessment of the results shows in general a good agreement of manual and algorithmic segmentations. Further, we achieve a good Average Symmetric Surface Distance while the maximum error is comparatively large due to low contrast at start and end points. Last, we compare the PASM to the standard ASM and show that the PASM leads to a higher accuracy.
Meike Becker,Matthias Kirschner, andGeorgios Sakas
"Segmentation of risk structures for otologic surgery using the Probabilistic Active Shape Model (PASM)", Proc. SPIE 9036, Medical Imaging 2014: Image-Guided Procedures, Robotic Interventions, and Modeling, 90360O (12 March 2014); https://doi.org/10.1117/12.2043411
The alert did not successfully save. Please try again later.
Meike Becker, Matthias Kirschner, Georgios Sakas, "Segmentation of risk structures for otologic surgery using the Probabilistic Active Shape Model (PASM)," Proc. SPIE 9036, Medical Imaging 2014: Image-Guided Procedures, Robotic Interventions, and Modeling, 90360O (12 March 2014); https://doi.org/10.1117/12.2043411