You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
28 March 2014Highly selective etch gas chemistry design for precise DSAL dry development process
Dry development process for directed-self assembly lithography (DSAL) hole shrink process has been studied with focus on etch selectivity of poly(methyl methacrylate) (PMMA) to polystyrene (PS) and suppression of etch stop. Highly selective etch of PMMA to PS was achieved using CO gas chemistry. However, it was found that PMMA etching stopped proceeding beyond a certain depth. Scanning Transmission Electron Microscopy (STEM) and X-ray Photoelectron Spectroscopy (XPS) analysis indicated that a deposition layer formed not only on PS but also on PMMA. H2 addition to CO plasma proved effective in controlling the deposition layer thickness and suppressing etch stop. CO/H2 plasma process combined with ion energy control was applied to the dry development process for hole shrink. DSAL dry development process for hole shrink process was successfully realized by designing the etch gas chemistry and controlling ion energy.
The alert did not successfully save. Please try again later.
M. Omura, T. Imamura, H. Yamamoto, I. Sakai, H. Hayashi, "Highly selective etch gas chemistry design for precise DSAL dry development process," Proc. SPIE 9054, Advanced Etch Technology for Nanopatterning III, 905409 (28 March 2014); https://doi.org/10.1117/12.2046145