Translator Disclaimer
24 June 2014 Infrared light field imaging using single carbon nanotube detector
Author Affiliations +
The conventional photographs only record the sum total of light rays of each point on image plane so that they tell little about the amount of light traveling along individual rays. The focus and lens aberration problems have challenged photographers since the very beginning therefore light field photography was proposed to solve these problems. Lens array and multiple camera systems are used to capture 4D light rays, by reordering the different views of scene from multiple directions. The coded aperture is another method to encode the angular information in frequency domain. However, infrared light field sensing is still widely opening to research. In the paper, we will propose micro plane mirror optics together with compressive sensing algorithm to record light field in infrared spectrum. The micro mirror reflects objects irradiation and forms a virtual image behind the plane in which the mirror lies. The Digital Micromirror (DMD) consists of millions microscale mirrors which work as CCD array in the camera and it is controlled separately so as to project linear combination of object image onto lens. Coded aperture could be utilized to control angular resolution of infrared light rays. The carbon nanotube based infrared detector, which has ultra high signal to noise ratio and ultra fast responsibility, will sum up all image information on it without image distortion. Based on a number of measurements, compressive sensing algorithm was used to recover images from distinct angles, which could compute different views of scene to reconstruct infrared light field scence. Two innovative applications of full image recovery using nano scale photodetector and DMD based synthetic aperture photography will also be discussed in this paper.
© (2014) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Ning Xi, Liangliang Chen, Zhanxin Zhou, Ruiguo Yang, Bo Song, and Zhiyong Sun "Infrared light field imaging using single carbon nanotube detector", Proc. SPIE 9070, Infrared Technology and Applications XL, 90700K (24 June 2014);


Infrared sensing of non-observable human biometrics
Proceedings of SPIE (May 31 2005)
Commercial fusion camera
Proceedings of SPIE (April 18 2006)
Microbolometers: a market perspective
Proceedings of SPIE (February 15 2012)
Half-active IR night-viewer system
Proceedings of SPIE (August 13 1998)

Back to Top