You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
9 June 2014Uncertainty assessment and probabilistic change detection using terrestrial and airborne lidar
Change detection using remote sensing has become increasingly important for characterization of natural disasters. Pre- and post-event LiDAR data can be used to identify and quantify changes. The main challenge consists of producing reliable change maps that are robust to differences in collection conditions, free of processing artifacts, and that take into account various sources of uncertainty such as different point densities, different acquisition geometries, georeferencing errors and geometric discrepancies. We present a simple and fast technique that accounts for these sources of uncertainty, and enables the creation of statistically significant change detection maps. The technique makes use of Bayesian inference to estimate uncertainty maps from LiDAR point clouds. Incorporation of uncertainties enables a change detection that is robust to noise due to ranging, position and attitude errors, as well as "roughness" in vegetation scans. Validation of the method was done by use of small-scale models scanned with a terrestrial LiDAR in a laboratory setting. The method was then applied to two airborne collects of the Monterey Peninsula, California acquired in 2011 and 2012. These data have significantly different point densities (8 vs. 40 pts/m2) and some misregistration errors. An original point cloud registration technique was developed, first to correct systematic shifts due to GPS and INS errors, and second to help measure large-scale changes in a consistent manner. Sparse changes were detected and interpreted mostly as construction and natural landscape evolution.
The alert did not successfully save. Please try again later.
André Jalobeanu, Angela M. Kim, Scott C. Runyon, R. C. Olsen, Fred A. Kruse, "Uncertainty assessment and probabilistic change detection using terrestrial and airborne lidar," Proc. SPIE 9080, Laser Radar Technology and Applications XIX; and Atmospheric Propagation XI, 90800S (9 June 2014); https://doi.org/10.1117/12.2049611