You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
13 June 2014Characterization of a compact 6-band multifunctional camera based on patterned spectral filters in the focal plane
In some applications of multi- or hyperspectral imaging, it is important to have a compact sensor. The most compact
spectral imaging sensors are based on spectral filtering in the focal plane. For hyperspectral imaging, it has been
proposed to use a "linearly variable" bandpass filter in the focal plane, combined with scanning of the field of view. As
the image of a given object in the scene moves across the field of view, it is observed through parts of the filter with
varying center wavelength, and a complete spectrum can be assembled. However if the radiance received from the object
varies with viewing angle, or with time, then the reconstructed spectrum will be distorted. We describe a camera design
where this hyperspectral functionality is traded for multispectral imaging with better spectral integrity. Spectral
distortion is minimized by using a patterned filter with 6 bands arranged close together, so that a scene object is seen by
each spectral band in rapid succession and with minimal change in viewing angle. The set of 6 bands is repeated 4 times
so that the spectral data can be checked for internal consistency. Still the total extent of the filter in the scan direction is
small. Therefore the remainder of the image sensor can be used for conventional imaging with potential for using motion
tracking and 3D reconstruction to support the spectral imaging function. We show detailed characterization of the point
spread function of the camera, demonstrating the importance of such characterization as a basis for image reconstruction.
A simplified image reconstruction based on feature-based image coregistration is shown to yield reasonable results.
Elimination of spectral artifacts due to scene motion is demonstrated.
The alert did not successfully save. Please try again later.
H. E. Torkildsen, H. Hovland, T. Opsahl, T. V. Haavardsholm, S. Nicolas, T. Skauli, "Characterization of a compact 6-band multifunctional camera based on patterned spectral filters in the focal plane," Proc. SPIE 9088, Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery XX, 908819 (13 June 2014); https://doi.org/10.1117/12.2054477