You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
13 June 2014Particle filter for long range radar in RUV
In this paper we present an approach for tracking with a high-bandwidth active radar in long range scenarios with 3-D measurements in r-u-v coordinates. The 3-D low-process-noise scenarios considered are much more difficult than the ones we have previously investigated where measurements were in 2-D (i.e., polar coordinates). We show that in these 3-D scenarios the extended Kalman filter and its variants are not desirable as they suffer from either major consistency problems or degraded range accuracy, and most flavors of particle filter suffer from a loss of diversity among particles after resampling. This leads to sample impoverishment and divergence of the filter. In the scenarios studied, this loss of diversity can be attributed to the very low process noise. However, a regularized particle filter is shown to avoid this diversity problem while producing consistent results. The regularization is accomplished using a modified version of the Epanechnikov kernel.
The alert did not successfully save. Please try again later.
Kevin Romeo, Peter Willett, Yaakov Bar-Shalom, "Particle filter for long range radar in RUV," Proc. SPIE 9092, Signal and Data Processing of Small Targets 2014, 909209 (13 June 2014); https://doi.org/10.1117/12.2050456