You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
22 May 2014Background suppression issues in anomaly detection for hyperspectral imagery
Anomaly detection becomes increasingly important in hyperspectral data exploitation due to the use of high spectral resolution which can uncover many unknown substances that cannot be visualized or known a priori. Unfortunately, in real world applications with no availability of ground truth its effectiveness is generally performed by visual inspection which is the only means of evaluating its performance qualitatively in which case background information provides an important piece of information to help image analysts to interpret results of anomaly detection. Interestingly, this issue has never been explored in anomaly detection. This paper investigates the effect of background on anomaly detection via various degrees of background suppression. It decomposes anomaly detection into a two-stage process where the first stage is background suppression so as to enhance anomaly contrast against background and is then followed by a matched filter to increase anomaly detectability by intensity. In order to see background suppression progressively changing with data samples causal anomaly detection is further developed to see how an anomaly detector performs background suppression sample by sample with sample varying spectral correlation. Finally, a 3D ROC analysis used to evaluate effect of background suppression on anomaly detection.