Translator Disclaimer
8 July 2014 Detector driver systems and photometric estimates for RIMAS
Author Affiliations +
The Rapid infrared IMAger-Spectrometer (RIMAS) is a rapid gamma-ray burst afterglow instrument that will provide photometric and spectroscopic coverage of the Y, J, H, and K bands. RIMAS separates light into two optical arms, YJ and HK, which allows for simultaneous coverage in two photometric bands. RIMAS utilizes two 2048 x 2048 pixel Teledyne HgCdTe (HAWAII-2RG) detectors along with a Spitzer Legacy Indium- Antimonide (InSb) guiding detector in spectroscopic mode to position and keep the source on the slit. We describe the software and hardware development for the detector driver and acquisition systems. The HAWAII- 2RG detectors simultaneously acquire images using Astronomical Research Cameras, Inc. driver, timing, and processing boards with two C++ wrappers running assembly code. The InSb detector clocking and acquisition system runs on a National Instruments cRIO-9074 with a Labview user interface and clocks written in an easily alterable ASCII file. We report the read noise, linearity, and dynamic range of our guide detector. Finally, we present RIMAS’s estimated instrument efficiency in photometric imaging mode (for all three detectors) and expected limiting magnitudes. Our efficiency calculations include atmospheric transmission models, filter models, telescope components, and optics components for each optical arm.
© (2014) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Vicki L. Toy, Alexander S. Kutyrev, Eric I. Lyness, Marius Muench, Frederick D. Robinson, Gennadiy N. Lotkin, John I. Capone, Sylvain Veilleux, Samuel H. Moseley, Neil A. Gehrels, and Stuart N. Vogel "Detector driver systems and photometric estimates for RIMAS", Proc. SPIE 9147, Ground-based and Airborne Instrumentation for Astronomy V, 91472W (8 July 2014);

Back to Top