You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
18 July 2014Astronomical near-infrared echelle gratings
High-resolution near-infrared echelle spectrographs require coarse rulings in order to match the free spectral range to the
detector size. Standard near-IR detector arrays typically are 2 K x 2 K or 4 K x 4 K. Detectors of this size combined
with resolutions in the range 30000 to 100000 require grating groove spacings in the range 5 to 20 lines/mm.
Moderately high blaze angles are desirable to reduce instrument size. Echelle gratings with these characteristics have
potential wide application in both ambient temperature and cryogenic astronomical echelle spectrographs. We discuss
optical designs for spectrographs employing immersed and reflective echelle gratings. The optical designs set constraints
on grating characteristics. We report on market choices for obtaining these gratings and review our experiments with
custom diamond turned rulings.
The alert did not successfully save. Please try again later.
Kenneth H. Hinkle, Richard R. Joyce, Ming Liang, "Astronomical near-infrared echelle gratings," Proc. SPIE 9151, Advances in Optical and Mechanical Technologies for Telescopes and Instrumentation, 91514A (18 July 2014); https://doi.org/10.1117/12.2054994