You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
5 September 2014Design and growth of lead selenoiodide semiconductors crystals for radiation detection
We have designed experiments utilizing for achieving desired bandgap resistivity, electron hole-pairs by solid solution materials. A low temperature synthesis, purification and growth to reduce stress and high yield for low defect density crystals of PbI2-PbSe system was developed for low cost large volume high efficiency detectors. This material system can be used for γ-ray detection. The material design is based on the heavy metal halide and selenide solid-solution system. This novel multicomponent crystal involves innovative approach for synthesis, purification and low temperature growth from the melt in modified three- zone Bridgman furnace. Crystals up to 15 mm diameter were grown and cm size slabs were fabricated for evaluation. Our approach for shaped crystal growth previously used for crystal is an exciting approach to increase the yield and further reduce the fabrication cost. Preliminary results show high resistivity and large crystal growth feasibility for crystals using parent components.
The alert did not successfully save. Please try again later.
David House, N. B. Singh, B. Arnold, Fow-Sen Choa, B. Schreib, "Design and growth of lead selenoiodide semiconductors crystals for radiation detection," Proc. SPIE 9213, Hard X-Ray, Gamma-Ray, and Neutron Detector Physics XVI, 921314 (5 September 2014); https://doi.org/10.1117/12.2062047