You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
18 November 2014Characteristic optimization of 1.55-μm InGaAsP/InP high-power diode laser
A comprehensive design optimization of 1.55-μm high power InGaAsP/InP board area lasers is performed aiming at
increasing the internal quantum efficiency (IQE) while maintaing a low internal loss of the device as well. The P-doping
profile and separate confinement heterostructure (SCH) layer band gap are optimized respectively with commercial
software Crosslight. Analysis of lasers with different p-doping profiles shows that, although heavy doping in P-cladding
layer increases the internal loss of the device, it ensures a high IQE because higher energy barrier at the SCH/P-cladding
interface as a result of heavy doping helps reduce the carrier leakage from the waveguide to the InP-cladding layer. The
band gap of the SCH layer are also optimized for high slope efficiency. Smaller band gap helps reduce the vertical
carrier leakage from the waveguide to the P-cladding layer, but the corresponding higher carrier concentration in SCH
layer will cause some radiative recombination, thus influencing the IQE. And as the injection current increases, the
carrier concentration increases faster with smaller band gap, therefore, the output power saturates sooner. An optimized
band gap in SCH layer of approximately 1.127eV and heavy doping up to 1e18/cm3 at the SCH/P-cladding interface are
identified for our high power laser design, and we achieved a high IQE of 94% and internal loss of 2.99/cm for our design.
The alert did not successfully save. Please try again later.
Qing Ke, Shaoyang Tan, Teng Zhai, Ruikang Zhang, Dan Lu, Chen Ji, "Characteristic optimization of 1.55-μm InGaAsP/InP high-power diode laser," Proc. SPIE 9266, High-Power Lasers and Applications VII, 92660Z (18 November 2014); https://doi.org/10.1117/12.2071525