In recent years, polycrystalline diamond has become the material of choice when it comes to making optical components for multi-kilowatt CO2 lasers at 10 micron, outperforming ZnSe due to its superior thermo-mechanical characteristics. For 1 micron laser systems, fused silica has to date been the most popular optical material owing to its outstanding optical properties. This paper characterizes high - power / high - energy performance of anti-reflection coated optical windows made of different grades of diamond (single crystal, polycrystalline) and of fused silica. Thermo-optical modeling results are also presented for water cooled mounted optical windows. Laser – induced damage threshold tests are performed and analyzed. It is concluded that diamond is a superior optical material for working with extremely high-power and high-energy laser beams at 1 micron wavelength. |
ACCESS THE FULL ARTICLE
No SPIE Account? Create one

CITATIONS
Cited by 14 scholarly publications.
Diamond
Silica
Crystals
Absorption
Chemical vapor deposition
Laser crystals
Continuous wave operation