Paper
8 February 2015 Physics and technology of antimonide heterostructure devices at SCD
Author Affiliations +
Abstract
SCD has developed a range of advanced infrared detectors based on III-V semiconductor heterostructures, grown on GaSb. The XBn/XBp family of detectors enables diffusion limited behavior with dark currents comparable with MCT Rule-07 and with high quantum efficiencies. InAsSb/AlSbAs based XBn focal plane array detectors with a cut-off wavelength of ~ 4.1 μm and formats presently up to 1024×1280 / 15 μm, operate with background limited performance up to ~175 K at F/3. They have a sensitivity and image quality comparable with those of standard InSb detectors working at 77K. In an XBp configuration, the same concept has been applied to an InAs/GaSb type II superlattice (T2SL) detector with a cut-off wavelength of ~ 9.5 μm, which operates with background limited performance up to ~100 K at F/2. In order to design our detectors effectively, a suite of simulation algorithms was developed based on the k ⋅ p and optical transfer matrix methods. In a given T2SL detector, the complete spectral response curve can be predicted essentially from a knowledge of the InAs and GaSb layer widths in a single period of the superlattice. Gallium free T2SL detectors in which the GaSb layer is replaced with InAs1-xSbx (x ~ 0.15-0.5) have also been simulated and the predicted spectral response compared for the two detector types.
© (2015) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Philip Klipstein "Physics and technology of antimonide heterostructure devices at SCD", Proc. SPIE 9370, Quantum Sensing and Nanophotonic Devices XII, 937020 (8 February 2015); https://doi.org/10.1117/12.2082938
Lens.org Logo
CITATIONS
Cited by 1 scholarly publication.
Advertisement
Advertisement
RIGHTS & PERMISSIONS
Get copyright permission  Get copyright permission on Copyright Marketplace
KEYWORDS
Sensors

Quantum efficiency

Long wavelength infrared

Mid-IR

Diffusion

Gallium antimonide

Staring arrays

Back to Top