You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
10 March 2015Laser cooling of doped crystals by methods of coherent pumping
Methods of coherent pumping through dipole-allowed 5d levels of RE ion are proposed for laser cooling. The coherent and complete population transfer between the ground and the first excited levels of 4f multiplet is achieved by using the different Raman techniques, namely two-photon scattering, adiabatic passage method, and π-pulse pumping. It is shown that the multiplication of the number of electrons that participate in cooling cycle leads to increasing of the cooling power and to acceleration of the cooling process. The increasing of cooling efficiency of 0.5% compared to the direct pumping between 4f levels is attained through the use of dipole-allowed optical transitions. Performed estimates show that the sample temperature can achieve 94 K for current purity materials. The calculations are obtained for Yb3+:CaF2 system.
The alert did not successfully save. Please try again later.
Andrei V. Ivanov, Yurii V. Rozhdestvensky, "Laser cooling of doped crystals by methods of coherent pumping," Proc. SPIE 9380, Laser Refrigeration of Solids VIII, 93800S (10 March 2015); https://doi.org/10.1117/12.2179907