You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
10 March 2015Heterogenously-integrated InP on Si microdisk lasers
We review recent theoretical and experimental work on InP membrane microdisk lasers heterogeneously integrated on SOI and coupled to a Si bus waveguide. After a general introduction on the fabrication and the operation principles, we will describe various improvements in the fabrication technology. This includes improvements in the yield of the bonding of the InP die on the SOI die and in the controllability of the bonding layer thickness, as well as an optimization of the alignment of the microdisk with respect to the silicon waveguide and some proposals for better heat sinking and loss reduction. Improvement in the alignment and the bonding has led to interesting results on the uniformity in device characteristics. In a second part, unidirectional behaviour and reflection sensitivity will be briefly discussed. Theoretical, numerical and experimental results will be shown about the unidirectional behavior and it will be explained how unidirectional microdisk lasers can be a lot less sensitive to external reflections than other lasers. We will also show how such lasers can be used as optical signal regenerators that can work with low optical input powers and that have small power consumption. We will end with a description of demonstrations of optical interconnects based on heterogeneously integrated microdisk lasers and heterogeneously integrated photodetectors. Optical interconnects on chip have been demonstrated at 10 Gb/s. An epitaxial layer stack that contains both the laser and the detector structure has been used for this purpose.
The alert did not successfully save. Please try again later.
G. Morthier, T. Spuesens, P. Mechet, N. Olivier, J.-M. Fedeli, P. Regreny, D. Van Thourhout, G. Roelkens, "Heterogenously-integrated InP on Si microdisk lasers," Proc. SPIE 9382, Novel In-Plane Semiconductor Lasers XIV, 93820Q (10 March 2015); https://doi.org/10.1117/12.2076292