You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
19 March 2015Nucleus detection using gradient orientation information and linear least squares regression
Computerized histopathology image analysis enables an objective, efficient, and quantitative assessment of digitized histopathology images. Such analysis often requires an accurate and efficient detection and segmentation of histological structures such as glands, cells and nuclei. The segmentation is used to characterize tissue specimens and to determine the disease status or outcomes. The segmentation of nuclei, in particular, is challenging due to the overlapping or clumped nuclei. Here, we propose a nuclei seed detection method for the individual and overlapping nuclei that utilizes the gradient orientation or direction information. The initial nuclei segmentation is provided by a multiview boosting approach. The angle of the gradient orientation is computed and traced for the nuclear boundaries. Taking the first derivative of the angle of the gradient orientation, high concavity points (junctions) are discovered. False junctions are found and removed by adopting a greedy search scheme with the goodness-of-fit statistic in a linear least squares sense. Then, the junctions determine boundary segments. Partial boundary segments belonging to the same nucleus are identified and combined by examining the overlapping area between them. Using the final set of the boundary segments, we generate the list of seeds in tissue images. The method achieved an overall precision of 0.89 and a recall of 0.88 in comparison to the manual segmentation.
The alert did not successfully save. Please try again later.
Jin Tae Kwak, Stephen M. Hewitt, Sheng Xu, Peter A. Pinto M.D., Bradford J. Wood, "Nucleus detection using gradient orientation information and linear least squares regression," Proc. SPIE 9420, Medical Imaging 2015: Digital Pathology, 94200N (19 March 2015); https://doi.org/10.1117/12.2081413