You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
20 May 2015Ring cavity surface emitting quantum cascade laser with a near Gaussian beam profile
We propose a vertical spiral phase corrector for ring cavity surface emitting (RCSE) quantum cascade lasers (QCLs), which will allow achievement of near-Gaussian generated beam profile. A problem with RCSE QCLs is their donutshaped intensity distribution with a node along the symmetry axis of the ring. This arises because of the π phase difference for the azimuthally polarized rays emitted from opposite elements of the ring. We theoretically demonstrate that near-Gaussian beams can be achieved with a spiral phase shifter that adds one wavelength of additional optical path in going once around the ring. Various three dimensional lithographic techniques for fabricating such a phase shifter, including a grey scale mask, electron-beam resist dose dependency, and two photon induced photopolymerization, are considered. Ring cavity QCLs with the proposed phase corrector will feature better beam quality, larger power, and better resistance to radiative damage in comparison with traditional edge-emitting QCLs.
The alert did not successfully save. Please try again later.
Pedro N. Figueiredo, Andrey Muraviev, Robert E. Peale, "Ring cavity surface emitting quantum cascade laser with a near Gaussian beam profile," Proc. SPIE 9466, Laser Technology for Defense and Security XI, 946602 (20 May 2015); https://doi.org/10.1117/12.2175616