You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
13 May 2015Optical fiber reliability in subsea monitoring
Fiber optic cables have been successfully deployed in ocean floors for decades to enable trans-oceanic telecommunication. The impact of strain and moisture on optical fibers has been thoroughly studied in the past 30 years. Cable designs have been developed to minimize strain on the fibers and prevent water uptake. As a result, the failure rates of optical fibers in subsea telecommunication cables due to moisture and strain are negligible. However, the relatively recent use of fiber optic cables to monitor temperature, acoustics, and especially strain on subsea equipment adds new reliability challenges that need to be mitigated. This paper provides a brief overview of the design for reliability considerations of fiber optic cables for subsea asset condition monitoring (SACM). In particular, experimental results on fibers immersed in water under varying accelerated conditions of static stress and temperature are discussed. Based on the data, an assessment of the survivability of optical fibers in the subsea monitoring environment is presented.