You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
12 May 2015Thermal and nonthermal melting of silicon exposed to femtosecond pulses of x-ray irradiation
Silicon irradiated with an ultrashort laser pulse can experience two competing damage processes: the ultrafast ’nonthermal melting’ or the picoseconds ‘thermal melting’. The first one occurs if the density of excited electrons within the conduction band overcomes a certain threshold value, which leads to modification of the atomic potential energy surface and triggers a phase transition. The second one heats a material due to the electron-ion (electron-phonon) coupling, which in case of atomic temperature exceeding melting temperature also induces a phase transition. Our recently developed code XTANT (X-ray-induced Thermal And Nonthermal Transition; N. Medvedev et. al, Phys. Rev. B 91 (2015) 054113), can model both effects simultaneously. Nonadiabatic electron-ion coupling is treated within tight binding molecular dynamics model beyond the Born-Oppenheimer approximation. Two different channels of phase transition emerge at different irradiation dose: thermal melting of silicon into low-density-liquid phase occurs for deposited energies above ~0.65 eV/atom; nonthermal melting into high-density liquid takes place for doses higher than ~0.9 eV/atom. Here we discuss in detail electronic processes during such phase transitions. Evolution of the electronic structure is presented.
The alert did not successfully save. Please try again later.
Nikita Medvedev, Zheng Li, Beata Ziaja, "Thermal and nonthermal melting of silicon exposed to femtosecond pulses of x-ray irradiation," Proc. SPIE 9511, Damage to VUV, EUV, and X-ray Optics V, 95110I (12 May 2015); https://doi.org/10.1117/12.2182765