You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
5 October 2015Aggregation and morphology control enables polymer solar cells with efficiencies near 11.5% (Presentation Recording)
Current high-efficiency (>9.0%) PSCs are restricted to materials combinations that are based on limited donor polymers and only one specific fullerene acceptor, PC71BM. Furthermore, best-efficiency PSCs are mostly based on relatively thin (100 nm) active layers. Here we first report multiple cases of high-performance thick-film (300 nm) PSCs (efficiencies up to 10.8%, fill factors up to 77%) based on conventional PCBM and many non-PCBM fullerenes. Our simple aggregation control and materials design rules allowed us to develop, within a short time, three new donor polymer, six fullerenes (including C60-based fullerenes), and over ten polymer:fullerene combinations, all of which yielded higher efficiency than previous state of art devices (~9.5%). The common structural feature of the three new donor polymers, the 2-octyldodecyl (2OD) alkyl chains sitting on quaterthiophene, causes a temperature-dependent aggregation behavior that allows for the processing of the polymer solutions at moderately elevated temperature, and more importantly, controlled aggregation and strong crystallization of the polymer during the film cooling and drying process. This results in a well-controlled and near-ideal polymer:fullerene morphology (containing highly crystalline, preferentially orientated, yet small polymer domains) that is controlled by polymer aggregation during warm casting and thus insensitive to the choice of fullerenes. The 2OD structural motif is then further applied to several other polymer backbones and produces three additional polymers with efficiencies between 10-11.5%. Our best efficiency (11.5%) is achieved via the combination of new structural designs, interface and optical engineering and optimizations on the solvents and additives of the polymer:fullerene solution.
He Yan
"Aggregation and morphology control enables polymer solar cells with efficiencies near 11.5% (Presentation Recording)", Proc. SPIE 9567, Organic Photovoltaics XVI, 956706 (5 October 2015); https://doi.org/10.1117/12.2189709
The alert did not successfully save. Please try again later.
He Yan, "Aggregation and morphology control enables polymer solar cells with efficiencies near 11.5% (Presentation Recording)," Proc. SPIE 9567, Organic Photovoltaics XVI, 956706 (5 October 2015); https://doi.org/10.1117/12.2189709