You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
27 August 2015Big-data x-ray phase contrast imaging simulation challenges
This position paper describes a potential implementation of a large-scale grating-based X-ray Phase Contrast Imaging System (XPCI) simulation tool along with the associated challenges in its implementation. This work proposes an implementation based off of an implementation by Peterzol et. al. where each grating is treated as an object imaged in the field-of-view. Two main challenges exist; the first, is the required sampling and information management in object space due to the micron-scale periods of each grating propagating over significant distances. The second is maintaining algorithmic numerical stability for imaging systems relevant to industrial applications. We present preliminary results for a numerical stability study using a simplified algorithm that performs Talbot imaging in a big-data context
The alert did not successfully save. Please try again later.
Edward S. Jimenez Jr., Amber L. Dagel, "Big-data x-ray phase contrast imaging simulation challenges," Proc. SPIE 9594, Medical Applications of Radiation Detectors V, 95940I (27 August 2015); https://doi.org/10.1117/12.2195584