You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
1 September 2015Experimental measurement and analysis of wavelength-dependent properties of the BRDF
The microfacet BRDF model is preferred to describe reflectance in many applications due to its closed-form approximation to the BRDF which is relatively easy to use; however, it almost entirely excludes wavelength-dependent scaling of the reflectance distribution. To rectify this, the BRDF was measured at multiple incident angles and for multiple materials at several wavelengths between 3.39 μm and 10.6 μm. Results quantify the dramatic change in the specular BRDF of a variety of materials even after accounting for overall reflectance, and suggests it is necessary to modify the wavelength dependence in the microfacet model.
The alert did not successfully save. Please try again later.
Samuel D. Butler, Stephen E. Nauyoks, Michael A. Marciniak, "Experimental measurement and analysis of wavelength-dependent properties of the BRDF," Proc. SPIE 9611, Imaging Spectrometry XX, 96110G (1 September 2015); https://doi.org/10.1117/12.2188093