In the current work, we have studied the possibility to characterize the reticle writing error fingerprint by an off-line position measurement tool and use this information to send feed-forward corrections to the ASML TWINSCANTM exposure tool. The current work is an extension of the work we published earlier. To this end, we have selected a reticle pair out of 50 production reticles that are used to manufacture a 28-nm technology device. These two reticles are special in the sense that the delta fingerprint contains a significant higher order RWE signature. While previously only the linear parameters were sent as feed-forward corrections to the ASML TWINSCANTM exposure tool, this time we additionally demonstrate the capability to correct for the non-linear terms as well. Since the concept heavily relies on the quality of the off-line mask registration measurements, a state-of-the-art reticle registration tool was chosen. Special care was taken to eliminate any effects of the tool induced shifts that may affect the quality of the measurements. The on-wafer overlay verification measurements were performed on an ASML YieldStar metrology tool as well as on a different vendor tool. In conclusion, we have extended and proven the concept of using off-line reticle registration measurements to enable higher order feed-forward corrections the ASML TWINSCANTM scanner. This capability has been verified by on-wafer overlay measurements. It is demonstrated that the RWE contribution in the overlay budget can be taken out of the feedback control loop and sent as feed-forward corrections instead. This concept can easily be extended when more scanner corrections become available. |
ACCESS THE FULL ARTICLE
No SPIE Account? Create one

CITATIONS
Cited by 1 scholarly publication and 1 patent.
Reticles
Photomasks
Overlay metrology
Scanners
Image registration
Semiconducting wafers
Optical alignment