You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
21 October 2015Real-time object detection and tracking in omni-directional surveillance using GPU
Recent technological advancements in hardware systems have made higher quality cameras. State of the art panoramic systems use them to produce videos with a resolution of 9000 x 2400 pixels at a rate of 30 frames per second (fps) [1]. Many modern applications use object tracking to determine the speed and the path taken by each object moving through a scene. The detection requires detailed pixel analysis between two frames. In fields like surveillance systems or crowd analysis, this must be achieved in real time.
Graphics Processing Units (GPUs) are powerful devices with lots of processing capabilities for parallel jobs. The detection of objects in a scene requires large amount of independent pixel operations on the video frames that can be done in parallel, making GPU a good choice for the processing platform. This paper only concentrates on Background Subtraction Techniques [2] to detect the objects present in the scene. The foreground pixels are extracted from the processed frame and compared to the corresponding ones of the model. Using a connected- component detector, neighboring pixels are gathered in order to form blobs which correspond to the detected foreground objects. The new blobs are compared to the blobs formed in the previous frame to see if the corresponding object moved.
The alert did not successfully save. Please try again later.
Florian Depraz, Vladan Popovic, Beat Ott, Peter Wellig, Yusuf Leblebici, "Real-time object detection and tracking in omni-directional surveillance using GPU," Proc. SPIE 9653, Target and Background Signatures, 96530N (21 October 2015); https://doi.org/10.1117/12.2194810