You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
22 August 2015Preparation of boron doped silicon films for its application in solar cells
Boron-doped a-Si:H thin films were prepared by plasma-enhanced chemical vapor deposition technique. As-deposited samples were thermally annealed at different temperatures from 450 °C to 1000 °C. The microstructures and electrical properties have been evaluated for the amorphous and nano-crystalline structures. It was found that thermal annealing can efficiently activate the dopant in films accompanying with formation of nc-Si grains. During the transition process from amorphous to nano-crystalline structures, the room temperature dark conductivity is increased from 6.6×10-4 S cm-1 to 2.8×102 S cm-1. Based on the properties of p-type silicon films, the P-N junction solar cells were prepared on n-type nc-Si substrate. It was shown that the conversion efficiency is increased monotonously as increasing the annealing temperature. Form the results, it can be implied that the solar cells with higher conversion efficiency can be obtained by using the method of thermal annealing.
The alert did not successfully save. Please try again later.
Chao Song, Xiang Wang, Yanqing Guo, Jie Song, Rui Huang, "Preparation of boron doped silicon films for its application in solar cells," Proc. SPIE 9656, International Symposium on Photonics and Optoelectronics 2015, 96560H (22 August 2015); https://doi.org/10.1117/12.2196294