You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
22 December 2015Relative humidity sensing using dye-doped polymer thin-films on metal substrates
We demonstrate humidity sensors based on optical resonances sustained in sub-wavelength thick dye-doped polymer coatings on reflecting surfaces. As a result of coupling between dye molecular absorption and Fabry-Perot resonances in the air-coating-surface cavity, the absorption spectra of such thin-film structures show a strong resonant peak under certain illumination conditions. These resonances are sensitive to the structural and material properties of the thin-film, metal underlayer and ambient conditions and hence can be used for gas and vapor sensing applications. Specifically, we present our proof of principle experimental results for humidity sensing using a thin-film structure comprising Rhodamine6G-doped polyvinyl alcohol (PVA) films on silver substrates. Depending on the PVA film thickness, dye-concertation and angle of incidence, the resonant absorption peak can undergo either red-shift or blue-shift as RH level increases in the range 20% to 60%. Also, the absorption magnitude at certain wavelengths near to resonance show almost linear reduction which can be used as the sensing signal. Our simulation studies show a very good agreement with the experimental data. The spectral and temporal sensitivity of this thin-film structure is attributed to the changes in the thickness of the PVA layer which swells by absorbing water molecules
The alert did not successfully save. Please try again later.
Madhuri Kumari, Boyang Ding, Richard Blaikie, "Relative humidity sensing using dye-doped polymer thin-films on metal substrates," Proc. SPIE 9668, Micro+Nano Materials, Devices, and Systems, 96680T (22 December 2015); https://doi.org/10.1117/12.2201167