You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
8 October 2015Research of single-polarization hollow-core photonic crystal fiber active resonator
A feasible program of single-polarization active resonator using hollow-core photonic crystal fiber is proposed in this paper. The basic structure of HCPCF active resonator is designed, and the influence of polarization mode dispersion on the detection accuracy is analyzed with a solution being put forward using single-polarization HCPCF. Then the cross structure of photonic crystal fiber is designed, modeled and simulated by finite element method (FEM) at the wavelength of 632.8nm, and the mode field distribution in the cross-section is obtained. By designing the core size of photonic crystal fiber properly, a polarization extinction ratio of 8.4dB is achieved; therefore single-polarization propagation can be realized in the HCPCF, resulting in suppression of polarization mode dispersion of resonator and improving the theoretical gyroscope detection limit. This research is of great guiding significance to the development of HCPCF RLG.