You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
22 December 2015Data fusion for QRS complex detection in multi-lead electrocardiogram recordings
Heart diseases are the main cause of death worldwide. The first step in the diagnose of these diseases is the analysis of the electrocardiographic (ECG) signal. In turn, the ECG analysis begins with the detection of the QRS complex, which is the one with the most energy in the cardiac cycle. Numerous methods have been proposed in the bibliography for QRS complex detection, but few authors have analyzed the possibility of taking advantage of the information redundancy present in multiple ECG leads (simultaneously acquired) to produce accurate QRS detection. In our previous work we presented such an approach, proposing various data fusion techniques to combine the detections made by an algorithm on multiple ECG leads. In this paper we present further studies that show the advantages of this multi-lead detection approach, analyzing how many leads are necessary in order to observe an improvement in the detection performance. A well known QRS detection algorithm was used to test the fusion techniques on the St. Petersburg Institute of Cardiological Technics database. Results show improvement in the detection performance with as little as three leads, but the reliability of these results becomes interesting only after using seven or more leads. Results were evaluated using the detection error rate (DER). The multi-lead detection approach allows an improvement from DER = 3:04% to DER = 1:88%. Further works are to be made in order to improve the detection performance by implementing further fusion steps.
The alert did not successfully save. Please try again later.
Carlos A. Ledezma, Gilberto Perpiñan, Erika Severeyn, Miguel Altuve, "Data fusion for QRS complex detection in multi-lead electrocardiogram recordings
," Proc. SPIE 9681, 11th International Symposium on Medical Information Processing and Analysis, 968118 (22 December 2015); https://doi.org/10.1117/12.2207560