You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
27 September 2016The design and implementation of the full-Stokes imaging spectropolarimeter
The imaging spectro-polarimetry combines the spectral imaging technology and the imaging polarization technology. It assembles the functions of camera, spectrometer and polarimeter. So the optical information quantity is increased and the detection efficiency is improved. But the acquirement of the multi-dimensional information results in the detector complex construction and large volume. The moving part is used in the current method to realize the different polarization states or spectral filtering. The images are difficult for registration and the current method can’t be used to get the motion scene. This paper presents innovative imaging spectro-polarimetry method with no moving parts. The hyper-spectral information, full-Stokes polarization information and one-dimensional spatial information are obtained by the polarization modulating and spectrum dispersing. The designed imaging spectro-polarimeter is composed of two parts, a polarization module and the spectral dispersive module. They are all employed stationary configuration. The polarization module includes two birefringent crystal wave plates and a polarizer. The thickness of the birefringent wave-plates and the polarization axes of each component are optimized and the full-Stokes polarization information is loaded on the spectrum. The polarization information can be restored by the Fourier transform. The concentric Offner configuration is adopted for spectral dispersive module. It is composed of two concave spherical mirrors and a holographic aberration-corrected convex grating. The designed dispersive configuration is compact and aligned simply. And high quality linear dispersion, low distortion spectral image are implemented. The Full-stokes imaging spectro-polarimeter our designed is validated by the model simulation and the laboratory experiment. The mixed hyper-spectral information and accuracy polarization information can be obtained.
The alert did not successfully save. Please try again later.
Jiankang Zhou, Yiqun Ji, Xinhua Chen, Yuheng Chen, Suodong Ma, Weimin Shen, "The design and implementation of the full-Stokes imaging spectropolarimeter," Proc. SPIE 9684, 8th International Symposium on Advanced Optical Manufacturing and Testing Technologies: Optical Test, Measurement Technology, and Equipment, 96843P (27 September 2016); https://doi.org/10.1117/12.2242944