You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
4 March 2016Formation of copper micropatterns by laser direct writing using copper nanoparticle ink
The 2D and 3D laser direct writing using Cu nanoparticle ink were studied using a compact blue-violet semiconductor laser. The laser direct writing based on a motion controller and G-code language program on PC enabled to prepare various kinds of shaped Cu grids which can be easily designed on-demand. A Cu grid pattern was prepared on a flexible and transparent polymer substrate and applied to a stress sensor. A star-shaped grid was fabricated a polymer substrate and the performance as a stress sensor for detecting the motion of human hand devises was demonstrated toward wearable electronics. In the preliminary 3D study, we have employed the layer-by-layer formation of a 3D structure, where cycle of the spin-coating of a metal nanoparticle ink and the laser direct writing were repeated. The 3D microstructures prepared by the 3D laser direct writing using Ag and Cu nanoparticle inks suggested the possibility of a 3D interconnection.
The alert did not successfully save. Please try again later.
Akira Watanabe, Jinguang Cai, Gang Qin, Lidan Fan, "Formation of copper micropatterns by laser direct writing using copper nanoparticle ink," Proc. SPIE 9736, Laser-based Micro- and Nanoprocessing X, 97360D (4 March 2016); https://doi.org/10.1117/12.2211215