You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
4 March 2016Cell sorting using efficient light shaping approaches
Early detection of diseases can save lives. Hence, there is emphasis in sorting rare disease-indicating cells within small
dilute quantities such as in the confines of lab-on-a-chip devices. In our work, we use optical forces to isolate red blood
cells detected by machine vision. This approach is gentler, less invasive and more economical compared to conventional
FACS systems. As cells are less responsive to plastic or glass beads commonly used in the optical manipulation
literature, and since laser safety would be an issue in clinical use, we develop efficient approaches in utilizing lasers and
light modulation devices. The Generalized Phase Contrast (GPC) method that can be used for efficiently illuminating
spatial light modulators or creating well-defined contiguous optical traps is supplemented by diffractive techniques
capable of integrating the available light and creating 2D or 3D beam distributions aimed at the positions of the detected
cells. Furthermore, the beam shaping freedom provided by GPC can allow optimizations in the beam’s propagation and
its interaction with the catapulted cells.
The alert did not successfully save. Please try again later.
Andrew Bañas, Darwin Palima, Mark Villangca, Jesper Glückstad, "Cell sorting using efficient light shaping approaches," Proc. SPIE 9764, Complex Light and Optical Forces X, 97640F (4 March 2016); https://doi.org/10.1117/12.2214165