You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
Generalized Phase Contrast (GPC) is an efficient method for efficiently shaping light into speckle-free contiguous
optical distributions useful in diverse applications such as static beam shaping, optical manipulation and recently, for
excitation in two-photon optogenetics. GPC typically results in a 3x intensified user defined input mask shape against a
dark background. In this work, we emphasize GPC’s capability of optimal destructive interference, normally used to
create the dark background surrounding the shaped light. We also study input parameters wherein the locations of light
and darkness are interchanged with respect to typical GPC output, thus resulting to a well-defined structured darkness.
The conditions that give destructive interference for the output are then applied to near-arbitrary shapes. Preliminary
experimental results are presented using dynamic spatial light modulator to form scaled arbitrary darkness shapes.
Supporting demonstrations that reverse the light and dark regions of amplitude-modulated input are also presented as a
related case of structuring destructive interference. Our analysis and experimental demonstrations show a simplified
approach in the generation of extended regions of destructive interference within coherent beams.
The alert did not successfully save. Please try again later.
Andrew Rafael Bañas, Mark Jayson Villangca, Darwin Palima, Jesper Glückstad, "Dark GPC," Proc. SPIE 9764, Complex Light and Optical Forces X, 97640H (4 March 2016); https://doi.org/10.1117/12.2216180