You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
10 March 2016High-order disclinations in the polarization of light
We present modelings of high-order line singularities encoded in space-variant polarization of light. This involves calculating the line patterns produced by the superposition of light beams in orthogonal states of circular polarization, with each beam carrying an optical vortex, and where one of them is asymmetric. This setting allowed us to study the case of monstars of high order. We find that monstars can have positive or negative singularity indices, modifying the previous understanding of the pattern, which was based on the case of lowest-order C- points. Monstars then remain characterized only by their own unique feature: sectors with patterns of mostly curved lines that radiate from the center. Given this definition, we propose that the case where the index is +1 be classified as a monstar. We also found that the asymmetric modes contain kinks that appear in the C-lines of a distinct but related pattern that contains line orientation discontinuities.
The alert did not successfully save. Please try again later.
Enrique J. Galvez, Behzad Khajavi, "High-order disclinations in the polarization of light," Proc. SPIE 9764, Complex Light and Optical Forces X, 97640R (10 March 2016); https://doi.org/10.1117/12.2212574