You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
24 March 2016Computerized lung cancer malignancy level analysis using 3D texture features
Based on the likelihood of malignancy, the nodules are classified into five different levels in Lung Image Database Consortium (LIDC) database. In this study, we tested the possibility of using threedimensional (3D) texture features to identify the malignancy level of each nodule. Five groups of features were implemented and tested on 172 nodules with confident malignancy levels from four radiologists. These five feature groups are: grey level co-occurrence matrix (GLCM) features, local binary pattern (LBP) features, scale-invariant feature transform (SIFT) features, steerable features, and wavelet features. Because of the high dimensionality of our proposed features, multidimensional scaling (MDS) was used for dimension reduction. RUSBoost was applied for our extracted features for classification, due to its advantages in handling imbalanced dataset. Each group of features and the final combined features were used to classify nodules highly suspicious for cancer (level 5) and moderately suspicious (level 4). The results showed that the area under the curve (AUC) and accuracy are 0.7659 and 0.8365 when using the finalized features. These features were also tested on differentiating benign and malignant cases, and the reported AUC and accuracy were 0.8901 and 0.9353.