You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
20 April 2016Experimental characterization of an adaptive aileron: lab tests and FE correlation
Like any other technology, morphing has to demonstrate system level performance benefits prior to implementation onto a real aircraft. The current status of morphing structures research efforts (as the ones, sponsored by the European Union) involves the design of several subsystems which have to be individually tested in order to consolidate their general performance in view of the final integration into a flyable device. This requires a fundamental understanding of the interaction between aerodynamic, structure and control systems. Important worldwide research collaborations were born in order to exchange acquired experience and better investigate innovative technologies devoted to morphing structures. The “Adaptive Aileron” project represents a joint cooperation between Canadian and Italian research centers and leading industries. In this framework, an overview of the design, manufacturing and testing of a variable camber aileron for a regional aircraft is presented. The key enabling technology for the presented morphing aileron is the actuation structural system, integrating a suitable motor and a load-bearing architecture. The paper describes the lab test campaign of the developed device. The implementation of a distributed actuation system fulfills the actual tendency of the aeronautical research to move toward the use of electrical power to supply non-propulsive systems. The aileron design features are validated by targeted experimental tests, demonstrating both its adaptive capability and robustness under operative loads and its dynamic behavior for further aeroelastic analyses. The experimental results show a satisfactory correlation with the numerical expectations thus validating the followed design approach.
The alert did not successfully save. Please try again later.
Gianluca Amendola, Ignazio Dimino, Francesco Amoroso, Rosario Pecora, "Experimental characterization of an adaptive aileron: lab tests and FE correlation," Proc. SPIE 9803, Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems 2016, 98034P (20 April 2016); https://doi.org/10.1117/12.2219187