You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
27 April 2016Development and characterization of high refractive index and high scattering acrylate polymer layers
The aim is to develop a polymer layer which has the ability to diffuse light homogeneously and exhibit a high refractive index. The mixtures are containing an acrylate casting resin, benzylmethacrylate, phenanthrene and other additives. Phenanthrene is employed to increase the refractive index. The mixtures are first rheologically characterized and then polymerized with heat and UV radiation. For the refractive index measurements the polymerized samples require a planar surface without air bubbles. To produce flat samples a special construction consisting of a glass plate, a teflon sheet, a silicone ring (PDMS mold), another teflon sheet and another glass plate is developed. Glue clamps are used to fix this construction together. Selected samples have a refractive index of 1.585 at 20°C at a wavelength of 589nm. A master mixture with a high refractive index is taken for further experiments. Nano scaled titanium dioxide is added and dispersed into the master mixture and then spin coated on a glass substrate. These layers are optically characterized. The specular transmission and the overall transmission are measured to investigate the degree of scattering, which is defined as the haze. Most of the presented layers express the expected haze of over 50%.
The alert did not successfully save. Please try again later.
Thomas Eiselt, Guillaume Gomard, Jan Preinfalk, Uwe Gleissner, Uli Lemmer, Thomas Hanemann, "Development and characterization of high refractive index and high scattering acrylate polymer layers," Proc. SPIE 9888, Micro-Optics 2016, 98880Q (27 April 2016); https://doi.org/10.1117/12.2227327