The first part of the paper summarizes the main advantages conferred by the use of front-end ASICs for highenergy astrophysics instruments in space mission. Space qualification of ASICs requires the chip to be radiation hard. The paper will shortly describe some of the typical hardening techniques and give some guidelines that an ASIC designer should follow to choose the most efficient technology for his project. The first task of the front-end electronics is to convert the charge coming from the detector into a voltage. For most of the Silicon detectors (CCD, DEPFET, SDD) this is conversion happens in the detector itself. For other sensor materials, charge preamplifiers operate the conversion. The paper shortly describes the different key parameters of charge preamplifiers and the binding parameters for the design. Filtering is generally mandatory in order to increase the signal to noise ratio or to reduce the duration of the signal. After a brief review on the main noise sources, the paper reviews noise-filtering techniques that are commonly used in Integrated circuits designs. The way sensors and ASICs are interconnected together plays a major role in the noise performances of the detection systems. The geometry of a sensor is therefore critical and drives the ASIC design. The second part of the paper takes the geometry of the detector as a story line to explore different kinds of ASIC structures and architectures. From the simple single-channel ASIC for CCDs to the most advanced 3D ASIC prototypes used to build dead-zone free imaging systems, the paper reports on different families of circuits for spectro-imaging systems. It emphasizes a variety of designer choices, all around the word, in different space missions. |
ACCESS THE FULL ARTICLE
No SPIE Account? Create one
Sensors
Sensors
Capacitors
Electronics
Electronics
Silicon
High energy astrophysics