Translator Disclaimer
22 July 2016 A cryogenic 'set-and-forget' deformable mirror
Author Affiliations +
This paper discusses the development, realization and initial characterization of a demonstrator for a cryogenic 'set and forget' deformable mirror. Many optical and cryogenic infrared instruments on modern very and extremely large telescopes aim at diffraction-limited performance and require total wave front errors in the order of 50 nanometers or less. At the same time, their complex optical functionality requires either a large number of spherical mirrors or several complex free-form mirrors. Due to manufacturing and alignment tolerances, each mirror contributes static aberrations to the wave front. Many of these aberrations are not known in the design phase and can only be measured once the system has been assembled. A 'set-and-forget' deformable mirror can be used to compensate for these aberrations, making it especially interesting for systems with complex free-form mirrors or cryogenic systems where access to iterative realignment is very difficult or time consuming.

The mirror with an optical diameter of 200 mm is designed to correct wave front aberrations of up to 2 μm root-mean square (rms). The shape of the wave front is approximated by the first 15 Zernike modes. Finite element analysis of the mirror shows a theoretically possible reduction of the wave front error from 2 μm to 53 nm rms. To produce the desired shapes, the mirror surface is controlled by 19 identical actuator modules at the back of the mirror.

The actuator modules use commercially available Piezo-Knob actuators with a high technology readiness level (TRL). These provide nanometer resolution at cryogenic temperatures combined with high positional stability, and allow for the system to be powered off once the desired shape is obtained. The stiff design provides a high resonance frequency (>200 Hz) to suppress external disturbances.

A full-size demonstrator of the deformable mirror containing 6 actuators and 13 dummy actuators is realized and characterized. Measurement results show that the actuators can provide sufficient stroke to correct the 2 μm rms WFE. The resolution of the actuator influence functions is found to be 0.24 nm rms or better depending on the position of the actuator within the grid. Superposition of the actuator influence functions shows that a 2 μm rms WFE can be accurately corrected with a 38 nm fitting error. Due to the manufacturing method of the demonstrator an artificially large print-through error of 182 nm is observed. The main cause of this print-through error has been identified and will be reduced in future design iterations. After these design changes the system is expected to have a total residual error of less than 70 nm and offer diffraction limited performance (λ14) for wavelengths of 1 μm and above.
© (2016) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Robin Trines, Huub Janssen, Sander Paalvast, Maurice Teuwen, Bernhard Brandl, and Michiel Rodenhuis "A cryogenic 'set-and-forget' deformable mirror", Proc. SPIE 9912, Advances in Optical and Mechanical Technologies for Telescopes and Instrumentation II, 99121B (22 July 2016);

Back to Top