You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
30 May 2016Optimal detection bandwidth for phase-sensitive optical time-domain reflectometry
The spectrum of the temporal traces obtained from a phase-sensitive optical time-domain reflectometer is theoretically and experimentally analysed, demonstrating its dependence on the incident optical pulse shape. Numerical simulations and theoretical results are validated experimentally, showing a good matching for rectangular optical pulses. The influence of the photodetector bandwidth on the temporal trace quality is also investigated by simulation and experiment. Results show that the photodetector bandwidth needs to be ~ 40 % wider than the pulse spectrum to acquire time-domain traces of the Rayleigh backscattered light with direct detection.